13 research outputs found

    Generative adversarial network image synthesis method for skin lesion generation and classification

    Get PDF
    Background: One of the common limitations in the treatment of cancer is in the early detection of this disease. The customary medical practice of cancer examination is a visual examination by the dermatologist followed by an invasive biopsy. Nonetheless, this symptomatic approach is time-consuming and prone to human errors. An automated machine learning model is essential to capacitate fast diagnoses and early treatment. Objective: The key objective of this study is to establish a fully automatic model that helps Dermatologists in skin cancer handling process in a way that could improve skin lesion classification accuracy. Method: The work is conducted following an implementation of a Deep Convolutional Generative Adversarial Network (DCGAN) using the Python-based deep learning library Keras. We incorporated effective image filtering and enhancement algorithms such as bilateral filter to enhance feature detection and extraction during training. The Deep Convolutional Generative Adversarial Network (DCGAN) needed slightly more fine-tuning to ripe a better return. Hyperparameter optimization was utilized for selecting the best-performed hyperparameter combinations and several network hyperparameters. In this work, we decreased the learning rate from the default 0.001 to 0.0002, and the momentum for Adam optimization algorithm from 0.9 to 0.5, in trying to reduce the instability issues related to GAN models and at each iteration the weights of the discriminative and generative network were updated to balance the loss between them. We endeavour to address a binary classification which predicts two classes present in our dataset, namely benign and malignant. More so, some well-known metrics such as the receiver operating characteristic -area under the curve and confusion matrix were incorporated for evaluating the results and classification accuracy. Results: The model generated very conceivable lesions during the early stages of the experiment and we could easily visualise a smooth transition in resolution along the way. Thus, we have achieved an overall test accuracy of 93.5% after fine-tuning most parameters of our network. Conclusion: This classification model provides spatial intelligence that could be useful in the future for cancer risk prediction. Unfortunately, it is difficult to generate high quality images that are much like the synthetic real samples and to compare different classification methods given the fact that some methods use non-public datasets for training

    Automatic Detection of Driver Fatigue Based on EEG Signals Using a Developed Deep Neural Network

    Get PDF
    In recent years, detecting driver fatigue has been a significant practical necessity and issue. Even though several investigations have been undertaken to examine driver fatigue, there are relatively few standard datasets on identifying driver fatigue. For earlier investigations, conventional methods relying on manual characteristics were utilized to assess driver fatigue. In any case study, such approaches need previous information for feature extraction, which could raise computing complexity. The current work proposes a driver fatigue detection system, which is a fundamental necessity to minimize road accidents. Data from 11 people are gathered for this purpose, resulting in a comprehensive dataset. The dataset is prepared in accordance with previously published criteria. A deep convolutional neural network–long short-time memory (CNN–LSTM) network is conceived and evolved to extract characteristics from raw EEG data corresponding to the six active areas A, B, C, D, E (based on a single channel), and F. The study’s findings reveal that the suggested deep CNN–LSTM network could learn features hierarchically from raw EEG data and attain a greater precision rate than previous comparative approaches for two-stage driver fatigue categorization. The suggested approach may be utilized to construct automatic fatigue detection systems because of their precision and high speed
    corecore